Technical Note TN003 - Methods for Coding Resistor Values in Part Numbers

Introduction

TT Electronics resistors have part numbers from a mixture of European and USA origins, and for some products both are valid. The datasheets indicate how part numbers are constructed, including a brief definition with example of the coding method for the resistance value. This document gives a full definition of the two coding methods. Appendix A shows a full range of examples across the entire value range.

European Value Coding Method

Between three and six characters are used. These characters may be significant digits, zeros or a multiplier letter.

- Significant Digits

For E24 ${ }^{1}$ values the number of significant digits can be one or two, and most have two.

For E96 ${ }^{1}$ \& E192 ${ }^{1}$ values the number of significant digits can be one, two or three, and most have three.

- Zeros

These are used according to the following rules:

1. Never use leading zeros (e.g. do not use "OR33" or " 03 K 3 ")
2. Use as many zeros as required between the multiplier letter and the closest significant digit (e.g. " 100 K ", "RO2")
3. Only use trailing zeros to bring the total number of characters up to a minimum of three (e.g. use "R10" rather than "R1", but do not use "R100" or "1K40")

- Multiplier Letter

This is used in place of a decimal point and indicates the multiplier applied to the units of measure. Lindicates milliohms (and is used for products whose ohmic range is predominantly below one milliohm), R indicates ohms (and is also commonly used for values in the milliohm range), K indicates kilohms ($\mathrm{x} 10^{3}$), M indicates megohms ($\mathrm{x} 10^{6}$), G indicates gigohms ($\mathrm{x} 10^{9}$) and T indicates teraohms ($\mathrm{x} 10^{12}$).

USA Value Coding Method

For most of the value range only numerical characters are used. The majority of TT Electronics products with USA value coding use four numerical characters. The datasheet will indicate if only three characters are to be used.

For a four character code, the first three digits are made up of the significant digits followed by enough zeros to give a total of three digits. The final digit is a multiplier which indicates how many zeros must be added to form the number expressing the value in ohms.

For example, 3304 indicates " 330 " +4 zeros $=3,300,000 \Omega$, or $3.3 \mathrm{M} \Omega$.
Note that the final digit may be zero. Hence 825Ω is coded as 8250 , and it is important to remember that this code does not mean 8250Ω, or $8.25 \mathrm{k} \Omega$, which would in fact be coded as 8251 .

For low ohmic values (below 100Ω), the multiplier would need to be less than zero, so this method cannot be used. Therefore, the value coding method becomes similar to the European one, using R as a multiplier letter. The only difference is that, where necessary, trailing zeros are added to bring the total number of characters up to four (e.g. $0.1 \Omega=\mathrm{R} 1$ and then two zeros are added to give a four character code R100).

For the small minority of cases where three character codes are used, similar principles apply, and the formats and examples are given in brackets in the list of Appendix A.

Note 1 - For a list of E24, E96 and E192 standard resistance values, see

https://www.ttelectronics.com/TTElectronics/media/ProductFiles/Resistors/ApplicationNotes/TN005-EIA-Standard-Values-for-Resistors.pdf

Appendix A: Coding Formats and Examples

Note 2 - Alternate formats and examples shown in brackets are for the less common three-character coding. Unless stated otherwise on the datasheet, four character coding should be used.
Note 3 - Alternate coding used for products whose ohmic range extends below one milliohm, and where indicated on the datasheet. The datasheet also indicates whether a trailing zero is to be used.

